Individual Globular Domains and Domain Unfolding Visualized in Overstretched Titin Molecules with Atomic Force Microscopy
نویسندگان
چکیده
Titin is a giant elastomeric protein responsible for the generation of passive muscle force. Mechanical force unfolds titin's globular domains, but the exact structure of the overstretched titin molecule is not known. Here we analyzed, by using high-resolution atomic force microscopy, the structure of titin molecules overstretched with receding meniscus. The axial contour of the molecules was interrupted by topographical gaps with a mean width of 27.7 nm that corresponds well to the length of an unfolded globular (immunoglobulin and fibronectin) domain. The wide gap-width distribution suggests, however, that additional mechanisms such as partial domain unfolding and the unfolding of neighboring domain multimers may also be present. In the folded regions we resolved globules with an average spacing of 5.9 nm, which is consistent with a titin chain composed globular domains with extended interdomain linker regions. Topographical analysis allowed us to allocate the most distal unfolded titin region to the kinase domain, suggesting that this domain systematically unfolds when the molecule is exposed to overstretching forces. The observations support the prediction that upon the action of stretching forces the N-terminal ß-sheet of the titin kinase unfolds, thus exposing the enzyme's ATP-binding site and hence contributing to the molecule's mechanosensory function.
منابع مشابه
Reversible unfolding of individual titin immunoglobulin domains by AFM.
Single-molecule atomic force microscopy (AFM) was used to investigate the mechanical properties of titin, the giant sarcomeric protein of striated muscle. Individual titin molecules were repeatedly stretched, and the applied force was recorded as a function of the elongation. At large extensions, the restoring force exhibited a sawtoothlike pattern, with a periodicity that varied between 25 and...
متن کاملSteered molecular dynamics studies of titin I1 domain unfolding.
The cardiac muscle protein titin, responsible for developing passive elasticity and extensibility of muscle, possesses about 40 immunoglobulin-like (Ig) domains in its I-band region. Atomic force microscopy (AFM) and steered molecular dynamics (SMD) have been successfully combined to investigate the reversible unfolding of individual Ig domains. However, previous SMD studies of titin I-band mod...
متن کاملThe key event in force-induced unfolding of Titin's immunoglobulin domains.
Steered molecular dynamics simulation of force-induced titin immunoglobulin domain I27 unfolding led to the discovery of a significant potential energy barrier at an extension of approximately 14 A on the unfolding pathway that protects the domain against stretching. Previous simulations showed that this barrier is due to the concurrent breaking of six interstrand hydrogen bonds (H-bonds) betwe...
متن کاملSteered molecular dynamics simulation of conformational changes of immunoglobulin domain I27 interprete atomic force microscopy observations
Atomic force microscopy and steered molecular dynamics investigations of the response of so-called mechanical proteins like titin, tenascin or their individual immunoglobulin and fibronectin type III domains have lead to qualitative insights about the relationship between the b sandwich domain architecture and the function of this class of proteins. The proteins, linear segments of up to hundre...
متن کاملForced unfolding of fibronectin type 3 modules: an analysis by biased molecular dynamics simulations.
Titin, an important constituent of vertebrate muscles, is a protein of the order of a micrometer in length in the folded state. Atomic force microscopy and laser tweezer experiments have been used to stretch titin molecules to more than ten times their folded lengths. To explain the observed relation between force and extension, it has been suggested that the immunoglobulin and fibronectin doma...
متن کامل